Clusters of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced interaction.

نویسندگان

  • Viviana Clavería
  • Othmane Aouane
  • Marine Thiébaud
  • Manouk Abkarian
  • Gwennou Coupier
  • Chaouqi Misbah
  • Thomas John
  • Christian Wagner
چکیده

We present experiments on RBCs that flow through micro-capillaries under physiological conditions. The strong flow-shape coupling of these deformable objects leads to a rich variety of cluster formation. We show that the RBC clusters form as a subtle imbrication between hydrodynamic interactions and adhesion forces because of plasma proteins, mimicked by the polymer dextran. Clusters form along the capillaries and macromolecule-induced adhesion contributes to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes stronger. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles capture the transition between adhesive and non-adhesive clusters at different flow velocities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Margination of white blood cells in microcapillary flow.

Margination of white blood cells (WBCs) towards vessel walls is an essential precondition for their efficient adhesion to the vascular endothelium. We perform numerical simulations with a two-dimensional blood flow model to investigate the dependence of WBC margination on hydrodynamic interactions of blood cells with the vessel walls, as well as on their collective behavior and deformability. W...

متن کامل

Numerical Solution for Gate Induced Vibration Due to Under Flow Cavitation

Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...

متن کامل

The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in...

متن کامل

Microfluidic interactions between red blood cells and drug carriers by image analysis techniques.

Blood is a complex biological fluid composed of deformable cells and platelets suspended in plasma, a protein-rich liquid. The peculiar nature of blood needs to be considered when designing a drug delivery strategy based on systemically administered carriers. Here, we report on an in vitro fluid dynamic investigation of the influence of the microcapillary flow of red blood cells (RBCs) on micro...

متن کامل

Hydrodynamic diffusion of a suspension of elastic capsules in bounded simple shear flow

A suspension of red blood cells in a flow undergoes hydrodynamic or shear-induced diffusion. It is known from experiments that deoxygenated or stiffer red blood cells have a lower hydrodynamic diffusion coefficient compared to oxygenated or softer red blood cells. In this paper, we numerically calculate the hydrodynamic diffusion coefficients of a suspension of elastic capsules of viscosity rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 12 39  شماره 

صفحات  -

تاریخ انتشار 2016